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ABSTRACT 

A mathematical model of tumor resistance to chemotherapy based on a stochastic 

process of change is presented. The probability of no resistant cells is utilized as a 

fundamental quantity of interest, and the effects of various therapeutic strategies on it are 

explored. Situations where one or two drugs are available are treated in detail and 

extrapolation made to the n-drug case. The situation where two drugs may not be given 

simultaneously is examined, and it is found that sequential alternation of drugs satisfies 

certain optimality criteria when both drugs are equally effective. From this it is inferred that 

the simultaneous administration of all available active agents is optimal where this is 

permissible. 

INTRODUCTION 

Despite the development of anticancer chemotherapeutic agents which are 
successful in the therapy of animal tumors, the success of such drugs in the 
treatment of human neoplasms has been limited. Animal tumor models have 
indicated that one cause of such treatment failure is the acquisition of an 
inherent resistance to the treating agent, or agents, by the tumor cells. This 
resistance is then transferable at mitosis to the daughter cells, indicating a 
probable genetic origin for this form of insensitivity. Similar phenomena are 
seen in a variety of biological systems. The process was first examined from a 
mathematical perspective for bacteria displaying resistance to viral infection 
[ 11. It was shown at that time that available evidence was compatible with the 
theory that these cells arose via random mutation and that such mutations 
occurred in the absence of the virus. The subject was extensively examined 
thereafter, in this and other contexts, by a number of authors [2-41. Although 
much experimental evidence has accrued that cells which display inheritable 
resistance are the cause of treatment failure in experimental tumor systems 
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[5] and that this arose via mutation to resistance in the absence of the drug 
[6], little attention has been paid to the therapeutic implications of this 
phenomenon. 

More recently the consequences of this process of resistance in the 
treatment of human malignancy has been explored in the case where a single 
drug is available [7], and a rudimentary model for two drugs has been 
proposed [S]. We will present here a framework for viewing the problem and 
give detailed consideration to the situation in which two potent che- 
motherapeutic agents are available. The probability of no doubly resistant 
cells will then be viewed as a minimal condition for successful therapy. When 
two drugs may not be given simultaneously, this then leads to the considera- 
tion of strategies dictating the order in which they may be given. Some 
optimality criteria are proposed, and under the assumption that each of two 
agents is equally effective, strategies are found which satisfy these criteria. 

THE MODEL 

Consider the case where there are n different antitumor agents available, 
T, , . , Tn. A tumor cell can then be characterised as being in one of 2” 
mutually exclusive states with respect to these agents, according to which 
therapies it is resistant to and which not. A cell will be defined to be resistant 
to an agent if it will survive administration of that agent at a stated dose with 
probability 1. 

Let R,,...,,(t) be the number of cells at time t which are resistant to the 
drugs {T,,T, ,..., T,) and not resistant to any in {T ,,..., T,,}\(T,,T, ,..., T,), 

and refer to such cells as being in the state RI,...*. Those cells sensitive (not 
resistant) to all n drugs will be identified as members of R,. For simplicity 
we will assume that the growth of unperturbed sensitive cells follows a pure 
birth process with birth rate h per cell, and specify that at time 0 there were 
R,(O) sensitive cells present. 

We will assume that at division each member of R, has a probability (Y, 
(i= 1 , . . ,n) of giving rise to a single daughter cell which is resistant to the 
agent T, at the dose given. From this it follows that the mutation rate 0~~ is a 
function of the drug, the concentration in which it is given, and the type of 
the tumor cells. Mutation rates between other substates will be indicated by 
LY~.~, where A is the set indicating the initial resistant substate and B 
indicates the resultant substate. Also we will assume that LYE, R > 0 * B \ A 
contains one element and A c B. This implies that multiple resistance occurs 
by single steps and that no back mutation can occur. 

We will now develop some results for the emergence of resistance to a 
single agent. We will assume that a single resistant cell divides repeatedly to 
form new resistant cells, and we may thus partition the resistant population 
into disjoint classes by the parent mutation which gave rise to them. It is then 
possible to utilize this structure to calculate the distribution of the number of 
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resistant cells [4] as follows. We will assume there are no resistant cells 
present at time 0, i.e., R,(O) > 0 e i = 0. Define Mi( t) to be the number of 
mutational events for treatment i prior to time t, that is, the number of 
transitions from R, to R,. Let W(u) be the growth process for resistant cells, 
which will be assumed to be independent and identical for each of the 
resistant subtypes, and let ( 7i) (j = 1,. . . , M, (t), i = 1,. . , n) be the times at 
which mutational events occur. Then [4] 

M,(t) 

R,(t)= c W(t-5,). 
j=I 

At each division of a sensitive cell there is a probability (Y, that a cell 
resistant to agent i will be created, and thus each division may be viewed as a 
Bernoulli trial. In order to proceed we will make the further assumption that 
we may approximate R,(t) by E[R,(t)]= R,(O)e”‘, so that we may calcu- 
late R,(t). As OL, is small and E[ R,(t)] is large in situations of interest, we 
will approximate M,(t) using a Poisson distribution, and then R,(t) will 
satisfy the definition of a filtered Poisson process [9]. 

It follows from the general theory of filtered Poisson processes [9] that the 
probability generating function (p.g.f.) is given by 

R,(t,s)=exp{~~(U)[W(t-U,S)-I]&), (1) 

where R,( t, s) is the p.g.f. of R,(t), etc., and m:(u) is the first derivative of 
the mean value function of the Poisson process. 

If all initial cells from which the tumor originated are sensitive, then when 
there are R,(O)e”’ sensitive cells present there have been R,(O)( exf - 1) 
divisions, and thus the mean value of the Poisson process is 

mi(t)=EIM,(t)]=Ro(0)a,(eX’-1). 

Experimental evidence [5] indicates that cells selected for resistance to a 
variety of agents are dynamically similar to the sensitive population from 
which they originated. Thus we choose W(t) to be a birth process specified 
as follows: 

Then 

E[ W( t)] = e”. 

W(t,s)=[l-e”‘+s-‘e”‘]-’ 

Use of (1) and integration then yields 

(2) 

R,(t,s)=[l_s+se-~‘]RO’o)“,‘h”“~‘--l) for i=l,...,n, (3) 
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from which 

E[R;(t)] = RO(0)cr,Xteh’, 

Var{R,(r)}=2R,(0)cqe2”‘( I-(l+$)eC”‘). 

DefiningP,(t)=P(R,(t)=O}and takinglim,_,of (3), wehave 

P,(t)=exp{-CY~R~(O)(~~‘-~)} 

=exp{-qE[Ra(t)-Rc(O)]}. (4) 

This could also be obtained by noting P,(t) = P( M, (t) = 0} and conditioning 
on the value of R,,(t), which leads to 

Ro(r)- ROW 
(1-q) 3 (5) 

which is very similar to (4) for q K 1, after conditioning (4) on R,(t). 

SINGLE AGENT THERAPY, n = 1 

In situations where only one drug is available, T,, a necessary condition 
for cure is that the agent is capable of removing sensitive cells at a faster rate 
than they can regrow. If this condition is satisfied, then P,(t), the probability 
of no drug resistant cells, may be viewed as the maximal probability for 
successful treatment with that drug. 

As may be expected, this probability shows an inverse relationship to 
tumor size, clearly indicating that early therapy (with a single agent) is more 
likely to be successful because of the smaller associated tumor size. 

In a variety of tumor protocols, therapy is given in courses with interven- 
ing treatment free periods to allow the subject to recover from the associated 
effects on normal tissues. If each course brings about an instantaneous 
reduction in the number of sensitive cells followed by an intertreatment 
growth period, then the probability that there will be no cells resistant to this 
treatment at time t after a completed schedule of J courses is given by 

p,(r)=(,-a,){~~=,[R,(t,-)-Ro(t:_,)]+R~(t)-~o(t;)} 

for tat,, (6) 

where R,( t,’ ) is the number of sensitive cells present immediately after, and 
R,( t; ) is the number of sensitive cells immediately before, the j th cycle of 
therapy which takes place at time tj. 

In what follows we will assume that therapy is initiated when R,(t) 
(which is the size of the tumor for a, small) reaches some fixed size which will 
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occur at a random time t,. For t > t , , R,(t) is a random variable and thus 
P,( 1) defined in (5) is conditional on R,(t). We thus seek to calculate the 
unconditional probability P,(t), that is, the mean value of P,(t) over the 
possible growth curves (R,(r); t > t ,). In order to calculate R i( t, s) we have 
assumed that the growth of R,(t) may be approximated by a piecewise 
exponential curve with discontinuities at times of therapeutic intervention. 
We expect this to be a reasonable approximation, since when R,(t) is large 
its growth will be close to exponential, and when R,(t) is small its effect on 
R,(t) will be small. In order to evaluate P,(t), we first consider the 
probabilistic nature of the process of drug induced cell death. 

A substantial amount of evidence [5] exists to show that, for cells which 
are not resistant to certain drugs, the logarithm of the probability q(D) that 
a cell will survive after exposure to the drug is linearly related to the dose D, 

i.e., 

lnq(D) =PD, 

where p ( < 0) is a constant. We will refer to p as the cell survival parameter. 
Drugs with more complex properties will not be considered here, although 
they may be formally incorporated by allowing p to be a function of relevant 

parameters. 
We now have all the information we require to compute P,(t). At this 

point we may also consider the quantity PO(t) = P( R,( t) = O}. A necessary 
condition for cure is that R,(t) = 0 and R,(t) = 0 for some t, and thus we 
seek to maximize the components of the vector P(t) = [P,(1), P,(t)]. We 
notice that P,(t) may be increased by giving the drug either for longer, or 
more frequently, or both, as long as the rate of cell growth does not outstrip 
the rate of cell death. However, this is not true for P,(t), which is monotoni- 
cally decreasing in t if we only use agent T,. Clearly the nature of Equation 
(6) indicates that for therapy to be successful, rapid depletion of sensitive 
cells is essential. Maintenance therapy strategies, where low dose therapies 
are continued over long periods of time, are unlikely to be successful except 
in cases where a, is very small. This also emphasizes (all other factors being 
equal) that the dose must be measured with respect to a time frame dictated 
by the growth rate of the tumor. The explicit calculation of P(t) for n = 1 
follows as a special case of the procedure provided in the next section for 
n = 2. 

THERAPY WITH TWO AGENTS, n = 2 

By analogy, when two drugs are available we will seek to maximize each 
of the components of the following vector of unconditional probabilities: 

P(t)= [P,(t),P,(t),P,(t),P,,(t)l 
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When both drugs may be given simultaneously, at full dose, it is prefer- 
able to use them in this way, as this results in enhanced kill of tumor cells at 
each cycle of therapy. Assuming independence of action of the two resistance 
processes, it is then possible to extend Equation (5) to allow for two resistant 
states. However, it is frequently found that active drugs have overlapping 
toxic affects on normal tissue, and it is impossible to give them together at 
full dose. It is therefore necessary to sequence the drugs and/or reduce their 
doses in order to obtain maximum effect. We will examine the effect of drug 
sequencing on P( t ). 

From the previous considerations for n = 1 it is clear that treatment 
should be given as frequently as allowed by the constraints outlined above. 
We will thus only consider strategies where treatment is given at the earliest 
times possible, as they will always be as good as or better than other 
strategies. 

First we will extend the definition of the cell survival parameter in the 
natural way. Let Plk be the cell survival parameter for a cell in R, (k = 0, 1,2) 
treated with agent i ( = 1,2). Notice /?,, = 0. 

Define 

T,k = exP(&,D,), 

where D, is the dosage level (assumed constant) of agent i. Assuming that 
each cell behaves independently, then its probability of survival after admin- 
istration of agent i is given by v,, for members of Rk(t) (k = 0,1,2), and 1 
for members of R,2(t). Let rik (‘) be the p.g.f. for the distribution of a cell 
surviving administration of an agent where the expected probability of 

survival is rr,k. 
We will assume R,(O)= R2(0)= R,*(O)= 0 and condition on R,(t,) 

being fixed. We may then proceed to calculate the p.g.f.‘s of R,(t) and R 2( t) 
as follows. For this purpose, as done previously, we will approximate the 
number of sensitive cells after thej th course of therapy by its expected value; 

thus 

R&j+ > = R&,- h(,)o 

where 

d(j) = 
1 if j th course is T, , 

2 if j th course is T2. 

Then the independence of the cells implies 

(7) 

R,(t:,s)=R,(t,-,6,(d(j))s+[1_6,(d(j))l~~~~)*), (8) 
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Trp = 1 - Tk* + S57ki) i = 1,2, 

and 6, (x) is the Kronecker delta between i and X. Also 

Immediately prior to the application of therapy j + 1, the expected size of 
the sensitive cell compartment will be 

R,( t,-+,) = R,( t,’ )ehA(‘) (9) 

where 

A(j) = r,,, - rj. 

There will be two contributions to the new growth of singly resistant 
clones in ( fJ , tJ + ,), one arising from growth of cells initially resistant at tj, the 
second from the transformation and growth of new mutations. Since these 
two contributions take place independently, the p.g.f. of the sum will be the 

product of the p.g.f.‘s for the two parts. 
Referring to the p.g.f. for the transformation and growth of new mutants 

intheinterval(t,,t,+,)asR,(t,+,,t,,s)wehave 

We may use (1) to calculate the p.g.f. Ri( t,+ ,, tJ, s) by using 

mi(t) = Ro(fJ)q[e”(‘-‘~)-l] for fE[tj,tj+,). (11) 

This yields 

(12) 

The recursive nature of Equation (10) along with Equations (8) and (12) 
thus permits calculation of R,(t,s) for i = 1,2. So that R,(t,s) will be 
defined for all t, we let R,(t,,s) = R,(t;,s) forj = l,..., J. This then allows 
calculation of R, ( I, s) for arbitrary t. Similarly we have 

Although R,,( t, s) is of great interest, it is not easy to calculate, because 
Theorem (1) is not applicable as R,(t) and R2( I) are not differentiable. 
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This problem was avoided when calculating R, ( t, s) (i = 1,2) by conditioning 
on R,(t;) and using E[R,(t)] for t > t,. Conditioning on R,(t;) (i = 1,2) 
does not seem intuitively reasonable as it did for R,(t). However, we do not 
require R,*(t, s) to evaluate P,2(t) = P(R,2(t) = 0). As noted previously, 
P,,(t) is merely the probability that there are no mutations to double 
resistance. In the interval ( tj, t,+ ,) the probability that no double mutations 
ariseis l-cr,,,, for every division by a member of Ri. We will now use this 
relationship to calculate P,,(t). 

Initially consider the R , compartment in the period ( tj, tJ + , ). R , increases 
by two sources: growth of cells existing at tj, and influx and growth of new 
mutants in (f,, t,+ ,). Th e number of divisions in existing cells equals the 
increase in the number of cells whose ancestors were in R,. This may be 
modeled by considering a relabeled birth process B in which each new 
mutant will lead to a random number of divisions, B(t), prior to t. Then 

P{B(t)=i}=P{W(t)=i+l} 

B(t,s)=s-‘W(f,s). 

Now the p.g.f. of the number of divisions in ( fj, tj+ ,) of cells in R, at t,’ is 
given by 

R,(&B(%),r)). 

We can also calculate the p.g.f. of the number of divisions of resistant cells 
arising from new mutations in (t,, t, + , ). We will refer to this quantity as 

R;(t,+ 1, /’ t s) [to indicate its relationship to R,( tj+ , , tj, s)], and it is calcu- 
lated from Equation (1) using (11) and B( t, s) in place of W( t, s). This yields 

R;(tj+,,tj,s)= []-s++~-~~(~)]a~Ro(r;+~)s-*(‘--S) 

xexp{cw,R,(t,+)(s-‘-l)(e”“(j)-1)). (13) 

Using the recursive nature of (14) and Equations (lo), (12), and (13), it is 
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possible to calculate P,,(t) for arbitrary t after noticing that for t < t, 

+(1- (Y;,,*)e-h’} 
%K’)v,,Iz(~ - a,,S2ehr 

xexp(Ro(Oh~,,,2(l- 5l2 )-‘(,ir- l)}]. (15) 

To calculate R,( t, s) we can again use p.g.f.‘s as follows: 

R,(t,_+,,s) =R,(t,-,~,(j)i(W(At(j)),s)). (16) 

This recursive relationship allows the calculation of R,( t, s) for any t. 

P,(t) (i = 0,1,2) may be calculated using Equation (10) or (16) evaluated at 

s = 0. 
A sample calculation is presented in Table 1, where each therapy is 

assumedtobegivenovera21 daycycle[A(j)=21 forj=l,...,J],R,(O)=l, 
the tumor doubling time is assumed to be 30 days [X = (ln2)/30], the 
probability of any cell surviving one course of either therapy is 0.01 (r,, = 
0.01, i * j), and all mutation rates are assumed to be 10m6 (cy,, (Ye, (Y,,,~, OL~,,~ 
= 10-q. 

TABLE 1 

Calculated Values for the First 10 Courses of Therapy” 

1; 
1; j-1 
‘; Tl 
t; r, 
t ; T, 
‘a Tl 
1; T 
ttY Tl 
6 T, 
t10 Tl 
111 T, 

Probability Probability Probability Probability 

Therapy of no that no cells that no cells Probability of no doubly 

given sensitive are resistant are resistant Expected of no double resistant 

in cells, to 1, to 2, tumor resistance cells, 

Time interval P,(r) PI(f) PZ(fl size in interval Plz(r) 

0.774 

0.707 

0.615 

0.493 

0.350 

0.204 

0.088 

0.024 

0.003 

0.000 

0.000 

0.0 

0.0 

0.0 

0.0 

0.0 

0.377 

0.984 

1.000 

1.000 

1.000 

1.000 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 1.00x 10’0 0.774 

0.0 1.63 x 10” 0.914 

0.0 3.25 x lo6 0.869 

0.685 1.03 x 106 0.803 

0.992 1.60x IO6 0.709 

1.000 2.61 x IO6 0.584 

1.000 4.23 x IO6 0.432 

1.000 6.88 x 106 0.27 1 

1.000 1.12x 10’ 0.131 

1.000 1.81 x 10’ 0.043 

1.000 2.95 x IO’ 0.008 

“Values given for each course represent the values immediately prior to the next course. The expected 

tumor size is given by E[R,(t)+ R,(t)+ R*(t)]. 
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Table I illustrates the calculation for a strategy in which the first 10 cycles 
consist of r,. As expected, this is seen to be very effective in eliminating cells 
in R o and R 2, so that at the end of 10 cycles the tumor is composed totally of 
R, and R,, cells. P,,( 1) is seen to decline steadily, so that at the end of the 
treatment period it is close to zero, indicating the likely existence of cells in 
R,, and consequently that use of T, at this point is unlikely to be ultimately 
successful. 

SEQUENCING THERAPY FOR n = 2 

An important question arises as to how we should sequence therapy. The 
probability of no doubly resistant clones developing prior to the institution 
of therapy is 

(1 - %2) Rl(‘)- M~(r)(l _ a2,,2)‘W- M,(r) 

which for a, 12, a2 ,* X 1 is approximately equal to 

exp(-a,,,,[R,(t)-M,(t)l-ol,,,,[R,(t)-MZ(t)l}. 

Clearly it is desirable to sequence therapy in such a manner that positive 
increments in the quantity 

(17) 

are minimized. In cases where both therapies may be given simultaneously 
this is clearly the optimum strategy, since R o, R, , and R 2 are simultaneously 
reduced. When they may not be given simultaneously we are faced with the 
choice of sequencing them and/or reducing doses to restrict toxicity to 
normal organ systems. We will now consider the case where it is desired to 
sequence two therapies whilst maintaining full dose of each, that is, subject 
to the restriction that simultaneous application is not permitted. 

The algorithm for P,,(t) may then be used to calculate the likely effect of 
various therapeutic strategies where therapies cannot be given simultaneously 
if values are known for the parameters ~,a, ~~a, T,~, 7rz,, a,, az, a,, ,*, (Y~,,~. 
Although this information is frequently available for experimental tumors, it 
is unlikely to be available for human tumors. It is therefore of interest to ask 
whether any deductions can be made from these considerations without 
explicit knowledge of the n’s and the a’s. 

In general this does not seem to be the case, because of the complex 
nature of the relationships derived for P,(t), P,(t), P2(t), and P,2(t). 
Analogously to the case n = 1, for cure to be possible the agents T, and T2 
must be applied in a way such that R,, R,, and R, cells are eliminated faster 
than they can repopulate. When therapies may not be given together, it is 
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clear that no therapeutic strategy will simultaneously maximize all compo- 
nents of P(t). In view of this we therefore attempt to maximize P,2(t) 
(f > tJ), as we can increase the number of cycles J so that Po( t), P,(t), and 
P2 (t) are arbitrarily close to 1 (t > tJ). 

From the above we should require of an effective therapeutic strategy that 
R,(r) and R 2 (t) should be zero with large probability at completion. Now 
the finite nature of this process implies that if R , (t) and R 2 (t) are equal to 
zero with high probability, then E[ R,(t)] and E[ R*(f)] are small. This 
implies that reasonable strategies will have E[ R , (r) + R 2 (r)] small at comple- 
tion, and from this it seems desirable to search for strategies which minimize 
E[ R , (t) + R z (t)], in the hope that they will be “good.” 

Alternatively, it is possible to take a more naive view of the whole process 
and use a quasideterministic approximation to the resistance process [9]. As 
might be expected, the probability of double resistance is then related to the 
expected numbers of singly resistant cells. This leads to the notion that the 
positive increments in the quantity 

should be minimized during therapy. It is interesting that there exist strate- 
gies which simultaneously minimize the sum of positive increments in (18) 
and E[ R, (t) + R 2 (t)], when the two agents are of equal effectiveness. We 
will now examine this particular case and refer to agents of equal effective- 
ness as being equivalent. 

Define two agents as being equivalent if they satisfy the following condi- 
tions: 

(i) aI = a,; al,l2 = ~2,1z; 
(ii) n,o = 730; 7712 = 91; 
(iii) identical intertreatment intervals, that is, A(i) constant forj = 1,. . ,J 

- 1. 
Define a strategy consisting of J cycles of therapy S as S = {d(i)>;‘, , , that 

is, the sequence in which agents are given. Strategies which do not apply an 
agent every A(j) units of time will not be considered, as they clearly will be 
inferior. Define a substrategy as S, = (d(i)):=,, which is the strategy S after 
the j th cycle. The application of J cycles of therapy naturally partitions the 
lifetime of the tumor into J + 1 disjoint periods. The independence of the 
process implies that we may consider separately resistant clones which arise 
in each of these periods. 

Define 

X(S,,k)= 2 8,(4i))-S2(4i)) for 1 Q j < k < J, 
i=J 
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which represents the modulus of the number of times T, is given minus the 
number of times T, is given between the j th and k th cycles of therapy. Let 

x,,(S,)=max{X(Sj,k):k>, jandk<J}; 

then define 

that is, the set of cycles at which the modulus of the difference in the number 
of T,‘s and T2’s is maximized commencing at j. We will be interested in the 
set of strategies 

A,={S,:X,(S,)=l), 

which is easily seen to be nonempty for allj. 
Let E,,(t) be the size of the compartment of cells resistant to treatment i 

at time t which arose in the j th interval (1 < j < J - 1). Define 

C(S,J)= 5 
i=l 

for tat,, 

that is the sum of the positive increments in the expected number of resistant 
cells originating in period j over the remaining treatment period. We are 
motivated to consider C( S,, t) because it is linearly related to the positive 
increments in (18) arising from mutations to resistance occurring in ( t,, t,+ ,). 
This is because from equivalence (Y,,,~ = (Y*,,~, and also, since a, = (r2 and 

=I0 = 77209 increments in M,(t) and M2( t) are independent of the order in 
which the agents are given. Thus strategies which minimize (19) also mini- 
mize the corresponding element of (18). 

Let 

E,,(t,-)= E; 

then E2,( t; ) = E by equivalence. Let 

c=exdA(t,+,-t,), e=l ,...,J- 1, 

and 
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n(k) = ; 6,(d(i)); 

i=j 

then 

J-l 

~(s,,~)=~(~-l) C Ck-j[Q”(k)+mk-l+‘--n(k)] 
k-j 

+ E~J-‘[ ,p(J) + rJ-f+ I-n’J’]( eWt-‘,) _ 1) for t>t,. 

Using this notation, it is now possible to show that C:= ,C(S,, t), and thus 
the positive increments in (18), are minimized by strategies which alternate 

therapy at each cycle. 

THEOREM 

XT= ,C( Sj, t) is uniquely minimized by the two strategies which alternate 

therapy at each cycle. 

This will be proven in three parts: 

(i) For any Sj E Aj we have C(S,:, t) < C(S,, t) for some S/ E A,. 
(ii) For Sj, S/ E Aj we have C(S,, t) = C(S/, t). 
(iii) Let S’=(1,2,1,2 ,... >, S2=(2,1,2,1 ,... }. Then S’,S,!EA~ for l<j 

< J. 

Proof: (i): Let uk be the operator which transposes the k th and k + 1st 
treatments. For arbitraryj assume that S, minimizes C( S,, t). Assume, for the 
purpose of contradication, that 

Choose k E K(S,). For k < J we may assume without loss of generality that 
d(k) = 1 * d( k + 1) = 2. Consider the strategy akSj. Then 

c&t)-c(u,S,,t)=E(c-l)ck-’ 

Xb n(k)-I(B_l)+Bk-j+I--n(k)(l-g)]. 

Now 

c(s,,t)-c(@,sj,t)<o * 2n(k)<k-j+2. 

But 2n( k) > k - j + 2, since X,,,(S,) 2 2, and this contradicts the assump- 
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tion. For k = J consider the strategy S,! where the last therapy 
changed, i.e., 

s,(d’(J))=l-6,(d(J)). 

Then one again obtains the same contradiction. By induction 

GOLDIE 

given is 

for any 
substrategy Sj such that X,,, (S,) > 1, then there exists a substrategy S,! where 

X,(S) < 1 satisfies C(S;, t) < C(S,, t). 
(ii): Let 

S,,S,‘EA, and S,*S;; 

then 

C(S,J)-C(S;,t) 

J-l 
=,IT(~_~) C Ck-J[71n(k)+nk+j+~-n(k)_sn’(k)_Qk+j+I-~’(k)] 

k=J 

+ EcJ-j [ *n(J) + TJ-j+ I -n(J) _ Tn’(J) _ rJ-j+ I -n’(J)] 

XhdW- b>l-0 

when n’(k) is equivalent to n(k) for substrategy SJ!. Now for k - j + 1 even, 

n(k)= k-j+1 
2 

= n’(k), 

and for k - j + 1 odd, 

n(k)=n’(k) or n(k)=k+ j+l-n’(k), 

because 

Thus 

c(s,,,)-c(s;,t)=o. 

(iii): Consider S’=(1,2,1,2 ,.., }, S2=(2,1,2,1 ,... }. Clearly S,‘,SJF~Aj 
for all j, and furthermore only they satisfy this property. Since these 
minimize C(S,, t) for each j, they thus minimize the sum 

5 C(S,J>. 
j=l 
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Thus we have that the alternating strategies S’ and S2 minimize the positive 
increments in (18), completing the proof. 

To show that these strategies also minimize E[ R, (t) + R 2 (f)] is compara- 
tively straightforward. It is easily seen that for t > tJ 

is minimized by n(J) = J/2 for J even and n(J) = (J IL 1)/2 for J odd, 
where n(J) is required to be integral and 0 < n < 1. Similar considerations to 
those used previously lead to the uniqueness of S’ and S2 in minimizing 

E[R,(t)+ R,(t)]. 
Although the idealization of equivalent agents may seldom be exactly 

realized in practice, many cases exist where it is approximately true. The 
incorporation of agents of varying effectiveness into a strategy based on 
estimates of their parameters would require great confidence both in this 
model and the data on which parameter estimates were based. However, 
when two equally effective agents are available, one does not have to rely on 
parameter estimates, and furthermore sequential alternation per se is unlikely 
to prove detrimental when the assumption of this model are not satisfied. 

Unfortunately, the two optimization criteria satisfied by S’ and S2 do not 
necessarily imply that P,,(t) is maximized over a fixed J cycles of therapy. 

TABLE 2 

Calculated Values of P( 1) for a Strategy in Which T, and T2 

are Alternated for the First 10 Curves of Therapy 

Probability Probability Probability Probability 

Therapy of no that no cells that no cells Probability of no doubly 

given sensitive are resistant are resistant Expected of no double resistant 

in cells, to 1, to 2, tumor resistance cells, 

Time interval P,(f) P,(l) q(t) size in interval PI,(t) 

t; 0.0 0.0 

t; j-l 0.0 0.0 

t; r, 0.0 0.0 

t4 r, 0.0 0.0 
r; Tz 0.0 0.0 
G r, 0.377 0.0 

1; Tz 0.984 0.281 

1s r, 1.000 0.28 1 

G 7-2 1.000 0.957 

rGl Tl 1.000 0.957 

r, Tz 1.000 0.999 

0.0 1.00x 10’0 0.774 0.774 

0.0 1.63 x IO8 0.914 0.707 

0.0 2.65 x IO6 0.996 0.704 

0.0 52,847 0.997 0.702 

0.0 1,020 1.000 0.702 

0.428 275 1.000 0.702 

0.428 8.7 1.000 0.702 

0.971 7.0 1.000 0.702 

0.971 0.23 1.000 0.702 

0.999 0.18 1.000 0.702 

0.999 6x 1O-3 1.000 0.702 
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Characterizing the conditions under which S’ and S* are optimal for P,2(t) 
under equivalence is complex. A necessary condition is that nc < 0.5, as 

otherwise extinction of R,, R,, and R, cells may never occur no matter how 
large J is. This would seem to imply that the more effective the agents (that 
is, the smaller the values of the T’S), the more likely it is that S’ and S* will 
maximize P,*(t). In a number of simulations S’ and S* do prove to 
maximize P,,(t) under equivalence. Table 2 gives the results for the previous 
example in which T, and T2 are now alternated for the first 10 cycles. One 
other property of S’ and S* is that if therapy is stopped arbitrarily prior to 
giving J cycles, then the resulting truncated strategies based on k cycles (say) 
are still optimal with respect to the original criteria. This is unique to S’ and 

S2. 

MULTIAGENT THERAPY, n > 2 

When n treatments are available the situation is quantitatively more 
complex and requires the simultaneous consideration of a large number of 
compartments. It is straightforward to see that any agents which may be 
given together, should be, since they will affect a greater proportion of the 
tumor’s cells. Approximate solutions can be obtained using expected values 
for the various resistant compartments obtained from simple approaches 
based on ordinary differential equations. This would again lead to considera- 
tion of quantities generalizing that of (18). Computation of “best strategies” 
could then be made, given knowledge of the relevant parameters, although 
such a calculation is somewhat less precise than can be made for the two 
drug case. In general, however, it seems the withholding of a useful drug for 
the therapy of possible future treatment failure only increases the likelihood 
of such an event. This model would predict that cell growth inevitably leads 
to a diversity of resistance and that strategies which attempt to maximize the 
potential for cure do not permit unrestricted growth in individual cellular 
subpopulations. It seems intuitive that alternating strategies will satisfy 
analogous criteria to that proposed for n = 2 for any number of equivalent 
treatments. When n agents are available an alternating strategy will consist of 
cyclic application of each agent in turn until each has been given once etc. 
For n equivalent therapies there will be n! alternating strategies. 

Decisions regarding the inclusion of marginally effective agents in proto- 
cols with more effective drugs must rely on more explicit consideration of 
each individual case. 

The authors wish to acknowledge the hard work of Linda Wood and Barbara 
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